Inter-module credit assignment in modular reinforcement learning
نویسندگان
چکیده
Critical issues in modular or hierarchical reinforcement learning (RL) are (i) how to decompose a task into sub-tasks, (ii) how to achieve independence of learning of sub-tasks, and (iii) how to assure optimality of the composite policy for the entire task. The second and last requirements are often under trade-off. We propose a method for propagating the reward for the entire task achievement between modules. This is done in the form of a 'modular reward', which is calculated from the temporal difference of the module gating signal and the value of the succeeding module. We implement modular reward for a multiple model-based reinforcement learning (MMRL) architecture and show its effectiveness in simulations of a pursuit task with hidden states and a continuous-time non-linear control task.
منابع مشابه
Reinforcement learning for multi-step problems
In reinforcement learning for multi-step problems, the sparse nature of the feedback aggravates the difficulty of learning to perform. This paper explores the use of a reinforcement learning architecture, leading to a discussion of reinforcement learning in terms of feature abstraction, credit-assignment, and temporal-difference learning. Issues discussed include: the conditioning of the reinfo...
متن کاملFeUdal Networks for Hierarchical Reinforcement Learning
We introduce FeUdal Networks (FuNs): a novel architecture for hierarchical reinforcement learning. Our approach is inspired by the feudal reinforcement learning proposal of Dayan and Hinton, and gains power and efficacy by decoupling end-to-end learning across multiple levels – allowing it to utilise different resolutions of time. Our framework employs a Manager module and a Worker module. The ...
متن کاملKnowledge Organization and Structural Credit Assignment
Decomposition of learning problems is important in order to make learning in large state spaces tractable. One approach to learning problem decomposition is to represent the knowledge that will be learned as a collection of smaller, more individually manageable pieces. However, such an approach requires the design of more complex knowledge structures over which structural credit assignment must...
متن کاملSpatio-Temporal Credit Assignment in Neuronal Population Learning
In learning from trial and error, animals need to relate behavioral decisions to environmental reinforcement even though it may be difficult to assign credit to a particular decision when outcomes are uncertain or subject to delays. When considering the biophysical basis of learning, the credit-assignment problem is compounded because the behavioral decisions themselves result from the spatio-t...
متن کاملFiltered Reinforcement Learning
Reinforcement learning (RL) algorithms attempt to assign the credit for rewards to the actions that contributed to the reward. Thus far, credit assignment has been done in one of two ways: uniformly, or using a discounting model that assigns exponentially more credit to recent actions. This paper demonstrates an alternative approach to temporal credit assignment, taking advantage of exact or ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 16 7 شماره
صفحات -
تاریخ انتشار 2003